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Assessing the Impact on Global Climate from General

Anesthetic Gases

Mads P. Sulbaek Andersen, PhD,* Ole J. Nielsen, PhD,¥ Timothy J. Wallington, PhD.¥
Boris Karpichev, PhD,* and Staniey P. Sander, PhD*

Although present in the atmosphere with a combined concentration approximately 100,000
times lower than carbon dioxide (i.e., the principal anthropogenic driver of climate change),
halogenated organic compounds are responsible for a warming effect of approximately 10% to
15% of the total anthropogenic radiative forcing of climate, as measured relative to the start of
the industrial era (approximately 1750). The family of anesthetic gases includes several
halogenated organic compounds that are strong greenhouse gases. In this short report, we
provide an overview of the state of knowledge regarding the impact of anesthetic gas release
on the environment, with particular focus on its contribution to the radiative forcing of climate

change. (Anesth Analg 2012;114:1081-5)

") esearch investigating the atmospheric chemistry
%, and environmental impact of halogenated anes-
-4t % thetic gases has been documented in the scientific
literature over the past 2 to 3 decades. With the increased
focus on concerns relating to global climate change, the
breadth of these investigations has expanded considerably
over the last few years. In the present work, our discussion
is centered on a recent review article entitled “General
Anesthetic Gases and the Global Environment,” in which
Ishizawa' addressed the global environmental impacts of
anesthetic procedures. Unfortunately, there are a number
of errors and misconceptions in the review. To clarify the
situation, we reevaluated the key variables needed to
access the impact of anesthetic procedures on global cli-
mate. Our report has 2 goals: first, t0 correct the erroneous
data, statements, and conclusions in the article by Ishizawa;
and second, to present a concise and technically accurate
overview of the atmospheric lifetimes, ozone depletion poten-
tials (ODPs), and global warming potentials (GWPs) of in-
haled anesthetics for reference by the medical community.

DHECUSHION

Radiative forcing is a measitre of the influence a factor has
in altering the balance of incoming and outgoing energy in
the Earth-atmosphere system, often stated relative to pre-
industrial conditions (ie., the year 1750).° Halogenated
organic compounds are an important category of green-
house gases and are responsible for approximately 10% to
15% of the radiative forcing of climate change by long-lived
greenhouse gases.” Greenhouse gases are compounds that
have a significant atmospheric lifetime, and possess infrared
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absorption bands that overlap with the outgoing radiation
from the Earth’s lower atmosphere. Gases that absorb
strongly in the atmospheric window, the spectral region
between approxdmately 8 to 14 pm (714-1250 cn™Y) in the
Earth’s infrared emission spectrum where absorption by the
naturally occurring greenhouse gases is relatively minor, are
particutarly effective at affecting the Earth’s radiative balance.
Figure 1 shows the spectrum of outgoing infrared radiation
from Earth in this atmospheric window region together with
the absorption bands of the halogenated anesthetic gases,
halothane (CE;CHCIBr), enflurane (CHECICE,OCE,H), iso-
flurane (CF,CHCIOCHEF,), desflurane {CF,CHFOCHF,), and
sevoflurane [(CF,),CHOCH,F]. All the anesthetic gases ab-
sorb in the atmospheric window region, as illustrated in
Figure 1. Emission of infrared radiation through the atmo-
spheric window into space is an important mechanism by
which the Earth’s temperature is regulated. Because these
anesthetic gases possess infrared absorption bands that
overlap outgoing radiation inside, as well as outside, the
atmospheric window, they can impede the flow of infrared
radiation out to space, and hence act as greenhouse gases.
In Ishizawa's" abstract, it is stated that “All volatile anes-
thetics that are currently used are halogenated compounds
destructive to the ozone layer.” That is not correct. All of the
halogenated compounds listed in Ishizawa’s* Table 1 are
greenhouse gases, but of the 3 major halogenated snesthetics
currently in use (isoflurane, desflurane, and sevoflurane), only
isoflurane contains chlorine, which can contribufe to the
chlorine-mediated catalytic destruction of stratospheric
ozone, Atmospheric oxidation of desflurane and sevoflurane
does result in the formation of CF, radicals, which add O, to
give CF,O, radicals followed by reaction with nitric oxide to
give CF30 radicals.®* Several years ago, it was speculated that
CF50 radicals could participate in catalytic ozone destruction
cycles®; however, experimental studies have subsequently
shown that this is not the case®” The chlorine-containing
isoflurane, “enflurane, and halothane, with the latter also
containing a bromine substituent in addition to chlorine, are
all ozone-depleting substances, but halothane is now only in
gignificant use in some developing countries. The ODP is the
frequently used index that conveniently compares the effec-
tiveness of 1 mass unit of a substance in destroying ozone
with that of CFC-11 (CCLF).® Because of the relatively short
atmospheric lifetimes of both isoflurane, its structural isomer
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GWP (CFC-42) = 10,880.2

¢ Estimated using the semiempirical method with fractional halogen release values {describes the fraction of the halogenated gas that has undergone
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“ Previous literature values were 440 and 870, with both values converted from HGWP values relative to CFC-12, using GWP (CFC-12) = 10,800 2

enflurane, and halothane, their resulting impact on ozone
depletion are comparatively small (Table 1).

Radiative forcing is a meiric used to compare the
impacts of external drivers of climate change. It is defined
as the change in net irradiance (W m™?) at the tropopause
caused by a change in an external driver of the climate
system. The change normally considered is based on a
1-ppb increase in the conceniration of the gas in the
troposphere and is termed radiative efficiency with units of
W m™? ppb~'. Radiative efficiency is calculated using
radiative transfer models of the atmosphere and depends
on the strength and spectral position of a compound's
absorption bands, atmospheric structure, surface tempera-
ture, and the presence or absence of clouds.®® Different
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gases will act over different time scales. The potential
coniribution of a greentiouse gas to climate change is
frequently assessed through the GWP index, which is a
function of both the radiative efficiency and the atmo-
spheric lifetime of the forcing agent. The GWP on a CO,
equivalent scale for time horizon t' can be defined as:

JEE, exp(t/z)dt
JoFco, R(t)dt

where F, is the radiative forcing per unit mass of species x,
Foo, is the radiative forcing of CO,, and R(t) is the response
function that describes the decay of an instantaneous pulse
of CO,. Furthermore, it is assumed that the decay of the

GWP{x(t)) =
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pulse of compound x assuming it obeys a simple exponen-
tial decay curve determined by a response time of ,. The
denominator in Equation 1 is the absoluie GWP for CO,,
which has been evaluated by the World Meteorological
Organization as 0.676 W m™2 ppm™! for a 100-year time
horizon® Knowing the GWP for an anesthetic gas, one can
obtain the C(; equivalency for an emission of the particu-
lar gas by simply maultiplying the mass emitted (in kilo-
grams) and the GWP of the gas.

Although GWP is not the only metric available for
comparing the impact of climate-forcing agents, GWP is the
most widely accepted metric.® Values of GWPs can depend
markedly on the choice of time horizon in the calculation
above. Compounds such as halogenated anesthetics that
decay much more quickly in the atmosphere than the
referenice compound, CO,, have GWPs that decrease mark-
edly with increasing time horizon. Typically, 3 time hori-
zons (20, 100, and 500 years) are used to capture impacts In
the short-, medium-, and long-term. As argued in Walling-
ton et al.,” we believe that given the importance of CO, in
climate change, and with its atmospheric lifetime of ap-
proximately a century, climate impact estimates should be
derived using time horizons that capture a significant
portion of the total impact of CO,. The United States
Environmental Agency, the FEuropean Environmental
Agency, and the United National Kyoto Protocol all use the
100-year time horizon for comparing the impacts of short-
and long-lived greenhouse gases,

Ishizawa's* Table 1 presents an overview of the atmo-
spheric lifetimes and the 20- and 100-year GWPs of
nitrous oxide, halothane, isoflurane, sevoflurane, and
desflurane. Unfortunately, the table contains several
errors. Ishizawa cites an atmospheric lfetime and GWP
for sevoflurane from the Intergovernmental Panel on
Climate Change (IPCC} AR4.? However, IPCC AR4 does
not contain any information on sevoflurane. Actually,

Ishizawa’s’ stated vahies are for CH,OCF,CF,CF, [HFE -

(HydroFluoroEther}-347mcc3], which is not sevoflurane
Isevoflurane has the molecular formula {CF;),CHOCH,F].
Furthermore, the atmospheric lifetime for halothane of 7 years
given in Ishizawa’s’ Table 1 is not in agreement with the
latest World Meteorological Organization assessment of a
lifetime of 1 year.® Finally, the atmospheric lifetimes listed
for desflurane and sevoflurane are based on kinetic studies
by Brown et al.’® and Langbein et al.,'* and the GWPs for
isoflurane, desflurane, and sevoflurane are from Ryan and
Nielsen,™ all of which are erroneous and have been super-
seded by more recent work.>'® As discussed by Calvert et
aL,* systematic errors in the work of Brown et al. lead to an
underestimation of atmospheric lifetimes. As noted by
Sulbaek Andersen et al.,'® there is a typo in the halocarbon
© GWP expression on page 5 of the supporting information
from Ryan and Nielsen,'? resulting in erroneous GWPs.
Ishizawa’s! Table 1 presents incorrect values of the climate-
relevant variables needed to estimate the contribution to
the forcing of climate by anesthetic procedures,

To remedy the situation, we have tabulated the most
current estimates of atmospheric lifetimes, ODP, radiative
efficiencies, and GWP for common halogenated anesthetic
gases in Table 1. For completion, the infrared absorption
spectra for halothane and enflurane were recorded and
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cross-sections {cm

molecule™)
Brown et al.*®  This work This work
{800-1200 (8001200 {656-1500
Compound em—) em™) cm™%)

Halothane, CF,CHCIBr 5.6 X 1077 6,38 X 1077 1.22 x 407
Enflurans, 1.9x107* 204 x 107* 2,68 x 10718
CHFCICF,OCF,H

used fo improve the guantification of the potential im-
pact on climate from halothane and enflurane release to
the atmosphere. Although the GWPs of these 2 com-
pounds have been assessed before,'%! the previous
assessments were based on a single measurement of the
infrared absorption spectra and the GWPs were coarsely
estimated based on normalizing the integrated infrared
absorption cross-sections relative to that of CFC-12
(CF,Cl,). This approach does not consider that the actual
Planck curve, illustrated in Figure 1, describing the
atmosphere’s radiative transfer over the spectral region
in which halogenated organic compounds absorb, is not
an ideal black-body curve, but diverges dramatically
because of the spectral overlaps of other radiatively
active species (greenhouse gases). The infrared spectra of
halothane and enflurane determined in this work are
shown in Figure 1 (blue and red traces), and the inte-
grated absorption cross-sections are listed in Table 2. The
experimental and theoretical methods used herein are
described elsewhere.’® The measured absorption cross-
sections of the anesthetics were weighted by an instan-
taneous cloudy sky radiative forcing calculated for a
model atmosphere with global mean specification of
cloudiness and accounting for absorption by CO,, O,
and water vapor.’® Using the specira for halothane and
enflurane shown in Figure 1, we calculated radiative
efficiencies for halothane and enflurane of 0.165 and
0.447 W m ™2 ppb ™, respectively. Using BEquation 1 with
the radiative efficiencies determined above and the at-
mospheric lifetimes listed in Table 1 gives GWPs (100-
year time horizon) of 50 and 680 for halothane and
enflurane. For comparison, the previous 100-year GWP
estimations for halothane and enflurane by Brown et al.?¢
and Langbein et al.'* are also included in the footnotes in
Table 1.

- Referring to the recent study by Ryan and Nielsen,*
Ishizawa states that “Their study suggests that all the
anesthetics (isoflurane, sevoflurane, and desflurane) can
have a significant influence on global warming with the
greatest influence produced by atmospheric desflurane.”
We believe this is an overstatement of the conclusions by
Ryan and Nielsen. The magnitude of the anesthetic emis-
sions is such that their climate impact is many orders of
magnitude less than that of global anthropogenic CO,
emissions. The inhaled anesthetics released during the
approximately 200 million anesthetic procedures per-
formed globally each year globally have a climate impact
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that is approximately 0.01%" of that of the CO, released
from global fossil fuel combustion.*®*® Although we do not
want to underestimate the importance of limiting green-
house gas emissions, the impact of the emission of anes-
thetics needs to be viewed in perspective. Trapping of used
inhaled anesthetics may be warranted, and if the haloge-
nated anesthetics available in the particular therapeutic
situation have equal therapeutic worth, doctors could
choose the one with the lowest impact on climate. The
decision to do so should involve a cost-benefit calculation
in which the question is whether switching anesthetics
provides the most climate protection in terms of avoided
greenhouse gas emissions for the given resources. Assess-
ing the costs is beyond the scope of the present work. The
benefits can be assessed using the data provided in Table 1.
Exercising care to avoid excessive use of anesthetic gases
has the double benefit of reducing health care costs and
protecting the environment.

CONGLUSIONS

Ishizawa’® concludes that “Key criteria that will determine
the global environmental impact of alternatives to haloge-
nated anesthetics and nitrous oxide are their atmospheric
lifetime, GWP, and ODP. These characteristics should be
determined for existing anesthetics, and for any new anes-
thetic gases before widespread clinical use.” We agree that
before the large-scale use of any industrial compound, an
assessment of the atmospheric chemistry, and hence envi-
ronmental impact, should be performed. Thorough inves-
tigations of the environmental impacts of the anesthetics
have now been performed and are summarized in Table 1.
Using clinical knowledge of anesthetic potency and result-
ing flow rate requirements, together with the 100-year
GWP values stated in Table 1, allows the anesthesiology
community to calculate the (0O, emissions equivalent (i.e.,
future climate impact) of each anesthetic procedure. §
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